Comb Model with Non-Static Stochastic Resetting and Anomalous Diffusion
نویسندگان
چکیده
منابع مشابه
Diffusion with stochastic resetting.
We study simple diffusion where a particle stochastically resets to its initial position at a constant rate r. A finite resetting rate leads to a nonequilibrium stationary state with non-Gaussian fluctuations for the particle position. We also show that the mean time to find a stationary target by a diffusive searcher is finite and has a minimum value at an optimal resetting rate r*. Resetting ...
متن کاملGreen function for a non-Markovian Fokker-Planck equation: Comb-model and anomalous diffusion
L. R. da Silva1, A. A. Tateishi2, M. K. Lenzi3, E. K. Lenzi2, and P. C. da Silva1,4 1Departamento de Fı́sica and National Institute of Science and Technology for Complex Systems, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil 2Departamento de Fı́sica and National Institute of Science and Technology for Complex Systems, Universidade Estadual de Maringá, Avenida Colombo, ...
متن کاملAnomalous Diffusion and Non-Monoexponential b-decay
M. G. Hall, C. Mackay, M. D. Robson, T. R. Barrick Centre for Medical Imaging Computing, Dept of Computer Science, University College London, London, United Kingdom, OCMR, University of Oxford, Oxford, United Kingdom, Dept of Clinical Neuroscience, St Georges, University of London, London, United Kingdom Introduction Significant departures from the standard monoexponential diffusion model have ...
متن کاملErgodic and Nonergodic Anomalous Diffusion in Coupled Stochastic Processes
Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin process whose friction coefficient depends on the state of a similar, unobserved process. Integrating out the latter, we derive the long-time behavior of the mean square displacement. Anomalous diffusion is found. Since the diffusion exponent cannot be predicted using a simple scaling argumen...
متن کاملCharacterizations and simulations of a class of stochastic processes to model anomalous diffusion
In this paper, we study a parametric class of stochastic processes to model both fast and slow anomalous diffusions. This class, called generalized grey Brownian motion (ggBm), is made up of self-similar with stationary increments processes (H-sssi) and depends on two real parameters α ∈ (0, 2) and β ∈ (0, 1]. It includes fractional Brownian motion when α ∈ (0, 2) and β = 1, and time-fractional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and Fractional
سال: 2020
ISSN: 2504-3110
DOI: 10.3390/fractalfract4020028